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Marginal stability boundaries for infinite- n ballooning modes
in a quasiaxisymmetric stellarator
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A method for computing the ideal magnetohydrodynamic~MHD! stability boundaries in
three-dimensional equilibria is employed. Following Hegna and Nakajima@Phys. Plasmas5, 1336
~1998!#, a two-dimensional family of equilibria is constructed by perturbing the pressure and
rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The
perturbations are constrained to preserve the MHD equilibrium condition. For each perturbed
equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus
constructed that are analogous to (s,a) diagrams for axisymmetric configurations. A
quasiaxisymmetric stellarator is considered. Calculations of stability boundaries generally show
regions of instability can occur for either sign of the average magnetic shear. Additionally, regions
of second-stability are present. ©2003 American Institute of Physics.@DOI: 10.1063/1.1622669#
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I. INTRODUCTION

A principle aim of stellarator research is to understa
the physical mechanisms that limit the plasma stored ene
The expectation is that pressure driven instabilities will
excited as the plasma energy increases relative to the m
netic energy. Since one of the advantages of stellarato
the avoidance of current limiting instabilities, pressu
driven instabilities may be critical in limiting stellarator op
eration.

In theoretical studies of particular configurations, loc
criterion deduced from ideal magnetohydrodynamic~MHD!
ballooning theory are often used to predict the plasma p
sure limits of stellarators. There is, however, experimen
evidence1,2 suggesting that localized ballooning instabiliti
set a pressure limit that is too pessimistic for stellarators

The intent of this article is to contribute to the unde
standing of the physics describing the onset of ideal MH
ballooning instabilities in stellarator configurations. In an
fort to understand the physical mechanism that causes
looning instability, Greene and Chance3 introduced a tech-
nique for constructing ballooning stability boundaries. In th
method, for a given numerically computed axisymmet
equilibrium, a two-dimensional family of equilibria is con
structed by self-consistently imposing perturbations on
pressure gradient and the shear at a given flux surface.
method allows the pressure gradient and average mag
shear to be varied independently of geometry. For each s
constructed equilibrium, the ballooning stability may be e
amined.

This technique clarified the onset of ‘‘second-stabilit
in tokamak configurations. It was noted that ballooning
stabilities arise in regions of unfavorable curvature and sm
local shear. As the pressure gradient is increased, the
creased parallel currents alter the local shear and the zer
4711070-664X/2003/10(12)/4716/12/$20.00
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local shear migrate poloidally. Second-stability is observ
when the zeros of the local shear coincide with favora
curvature, and when in the unfavorable curvature regio
the magnitude of the local shear is sufficient to stabilize
ballooning modes.

To what extent these ideas are applicable to the non
symmetric stellarator devices is an area of present resea
Stellarator geometry can be far more complicated than
of the tokamak. It has been suggested that second-stab
may be difficult to obtain in quasihelical equilibria,4 but
second-stability has been observed in a quasipolo
equilibrium.5 The existence of a second stable region in s
larators suggests the possibility of highb operation and is an
enticing prospect.

A feature related to second stability, which we call ‘‘se
stabilization’’ after Ref. 6 has been observed in various s
larator experiments.7–10 In these results, geometrical defo
mations associated with the Shafranov shift result
configurations which are stable with respect to Merc
modes as pressure is increased. In this article, we use
term second stability to refer to the stabilization of balloo
ing modes due to pressure induced variations in the lo
shear, with no geometrical deformations.

Hegna and Nakajima11 extended the theory of Green
and Chance to three-dimensional configurations. In t
work, we study the ideal ballooning stability of a family o
quasiaxisymmetric stellarator equilibria and present marg
stability diagrams. We find that for this configuration, th
existence of second-stability is observed on some magn
surfaces. While the conventional explanation of the appe
ance of second-stability~instability ensues when regions o
unfavorable curvature overlap regions of small local she
second-stability occurs through pressure modulations of
local shear! seems plausible, the nonaxisymmetry of stella
tors results in a more complicated structure of both the c
6 © 2003 American Institute of Physics
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vature and the local shear and the mechanism of sec
stability is less easily demonstrated.

The outline of this paper is as follows. In Sec. II, th
theory of the profile variation method is described. The n
merical implementation is discussed in Sec. III, and in S
IV benchmarking results for an axisymmetric case are p
sented. The axisymmetric case is useful for developing in
ition about the role of curvature and local shear. Section
will present marginal stability diagrams and analysis o
quasiaxisymmetric stellarator. Some similar features of
marginal stability diagrams are observed. The existence
unstable regions for either sign of averaged magnetic s
and the existence of second-stability is observed. Section
will discuss the effect of field line variation on the stabili
diagrams. Some discussion of the physical mechanism
ballooning stability, and the characteristics leading
second-stability will be mentioned is given in Sec. VII; how
ever, a full quantitative description of the onset of seco
stability is an involved topic and requires further detail
analysis which is left to future work.

II. THEORY

This work is essentially a numerical implementation
the theory presented by Hegna and Nakajima,11 who gener-
alized the work of Greene and Chance.3 By applying varia-
tions to, in this case, the pressure gradient and the ave
magnetic shear at a selected surface of a given equilibri
and requiring that the coordinate response to the variat
be such that the resultant state is also an equilibrium, a t
dimensional family of perturbed equilibria are constructe
Using this method, the effect on ballooning stability
changes in the pressure gradient and changes in the s
may be separately studied, with the surface geometry h
fixed. The following shall outline the principles of th
method and the key assumptions. For additional details
reader should consult Ref. 11.

The analysis proceeds using Boozer coordinates12 with
~c,u,z! being the radial~toroidal flux!, poloidal and toroidal
coordinates. The magnetic field is written in contravaria
and covariant form as

B5¹c3¹u1i- ~c!¹z3¹c, ~1!

B5b~c,u,z!“c1I ~c!“u1G~c!“z, ~2!

wherei- is the rotational-transform,G is the poloidal current
exterior toc, I is the toroidal current interior toc, andb is
related to the Pfirsch–Schlu¨ter current.

The magnetic field is defined implicitly through the c
ordinate transformx~c,u,z! from Boozer coordinates to Car
tesian coordinates. The metric elements of the transforma
gi j 5ei•ej are defined by the basis vectorsec5]cx,eu

5]ux, and ez5]zx. The magnetic field may be written i
terms of the basis vectors as

B5~i- eu1ez!/Ag. ~3!

As Eqs. ~1! and ~2! represent the same magnetic field t
following conditions must be satisfied:

Ag5~G1i- I !/B2, ~4!
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G5~gzz1i- guz!/Ag, ~5!

I 5~guz1i- guu!/Ag, ~6!

b5~gcz1i- gcu!/Ag. ~7!

These equations, and the force balance equation

¹p5J3B, ~8!

will be used to derive relationships between the perturb
quantities.

The method of profile variations is to vary the pressu
gradientp8 and sheari-8 at a given surfacecb while keeping
the pressurep and rotational-transformi- undisturbed~to
lowest order!. To achieve this, the variabley is introduced:

y5
c2cb

m
, ~9!

wherem!1 is a small expansion parameter. By express
the perturbed quantities as functions ofy rather thanc, de-
rivatives with respect toc will introduce a factorm21, thus
ensuring that the variations in the gradientsp8,i-8 are lower
order than the variations in the pressure and rotation
transformp,i-.

The pressure and rotational-transform profiles are
scribed in the vicinity of a magnetic surfacecb by the ex-
pansion

p~c!5p(0)~c!1mp(1)~y!1¯ , ~10!

i-~c!5i- (0)~c!1mi- (1)~y!1¯ , ~11!

where p(0),i- (0) are the pressure and rotational-transfo
profiles of the undisturbed equilibrium andp(1),i- (1) are the
perturbation profiles~similar notation is used below!.

For the perturbed state to satisfy the equilibrium con
tions, it is necessary that the magnetic field also be p
turbed. This is achieved by perturbing the coordinate tra
formation

x~c,u,z!5x(0)~c,u,z!1mx(1)~y,u,z!1¯ . ~12!

From this representation, the perturbed basis vectors are
termined:

ec5ec
(0)1]yx

(1)1¯ , ~13!

eu5eu
(0)1m]ux(1)1¯ , ~14!

ez5ez
(0)1m]zx

(1)1¯ . ~15!

The basis vectorseu andez are undisturbed to lowest orde
but theec basis vector has order unity variations. It follow
that the metric elementsguu , guz , andgzz are undisturbed,
but thatgcc , gcu , andgcz have order unity variations. Fo
consistency, bothG andI are perturbed similarly top andi-,
but b requires order unity variations as it contains thegcz

andgcu metric elements.
As can be seen from the perturbed basis vectors, the

quantity in the coordinate variation is]yx
(1). This is ex-

panded in a basis

]x(1)

]y
5CB1D

B3“c

B2 1M
“c

gcc , ~16!
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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whereC, D, andM are to be determined. The condition th
the magnetic field strength be undisturbed to lowest orde
imposed. This is equivalent to requiring that the variation
the Jacobian be zero which, given the perturbed basis
tors, becomes

]x(1)

]y
•

]x(0)

]u
3

]x(0)

]z
5

]x(1)

]y
•¹cAg50, ~17!

giving the constraintM50. This ensures that the variatio
]yx

(1) lies within the flux surface. The quantityC may be
written C5b (1)/B2 due to Eq.~7! and a relation forb (1) is
obtained from the momentum balance equation.

To obtain an expression for the quantityD the con-
straints imposed by requiring the perturbations satisfy E
~5!, ~6! and force balance are utilized. This results in
equation forD,

S ]

]z
1i-

]

]u DD5i- (1)8
1

r1/gcc S 1

gcc 2 R 1

gccD
2p(1)8

V8~G1i-I !

r1/gcc S l

gcc R 1

gcc

2
1

gcc R l

gccD , ~18!

where

R Q[ R du

2p R dz

2p
Q ~19!

is the flux surface average.
All the necessary information to solve for infinite-n bal-

looning mode equation in the perturbed equilibrium is n
obtained. The ballooning equation~28! depends on the fol-
lowing quantities:B2 andAg, which are required to be un
disturbed to lowest order;gcc, which is equivalent to
(guugzz2guzguz)/Ag2 and is undisturbed to lowest orde
G, i-, and I , which are undisturbed to lowest order; and t
normal and geodesic curvatureskn , kg , and the local shear
The curvatures are defined in Ref. 11:

kn5
~b•¹!b•¹c

gcc , ~20!

kg5
~b•¹!b"B3¹c

B2 . ~21!

The unit vector in the direction of the magnetic fieldb is

b5
i-eu1ez

ui-eu1ezu
, ~22!

and¹c may be written

¹c5
eu3ez

Ag
. ~23!

Both these quantities~and B,B2) are undisturbed to lowes
order; thus, the normal and geodesic curvatures are also
disturbed as no radial derivatives are involved. The lo
shear used by Ref. 11 is
Downloaded 25 Nov 2003 to 198.35.4.102. Redistribution subject to AI
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s5Ag
B3¹c

gcc •¹3
B3¹c

gcc . ~24!

This term is disturbed by the perturbations as a radial der
tive is involved. Using the contravariant form ofB given in
Eq. ~1!, the local shear is writtens5i-81 s̃ wheres̃ is given

s̃5S i-
]

]u
1

]

]z D S Ggcu2Igcz

Aggcc D . ~25!

The perturbed part of this is

~G]yx
(1)
•eu2I ]yx

(1)
•ez!/~Aggcc!5D. ~26!

The termD thus represents how the profile variations affe
the local shear. Remarkably, as far as the infinite-n balloon-
ing equation~28! is concerned, it isonly the local shear tha
is affected by the profile variations~other than of course
p8,i- 8). We conclude that any change in the ballooning s
bility caused by the profile variations must be due to var
tions in the local shear.

The ballooning mode equation in the perturbed equil
rium is written by transforming the angle variablesa5u
2i- z,h5z so thata labels the field line,h labels position
along the field line and theB•¹ operator becomes

B•¹5
1

Ag

]

]h
, ~27!

where]h5]z1i-]u . The ballooning equation is given in
form that highlights the role of the~integrated! local shear,

]

]h S B2

gcc 1gccL2D ]j

]h
12~p(0)81p(1)8!Ag~G1i- I !

3~kn1kgL !j5v2~c,a,hk!S B2

gcc 1gccL2D j, ~28!

whereL is the integrated local shear

L5E
hk

h
dh8s~h8!, ~29!

hk is the ballooning angle andv2 is the ballooning eigen-
value which in general depends on the surface, field line
ballooning anglehk . This is an ordinary differential equa
tion with boundary conditionj(6`)50. For numerical
work, the boundary condition is thatj(6h`)50, whereh`

is chosen to sufficiently large to contain the mode.
The equilibrium variations describe the separate effe

that the variation inp8 and i-8 have on the local shear, an
thus on ballooning stability. Takingp8 andi-8 as independen
variables, a two-dimensional family of equilibrium surfac
may be constructed. For each surface ballooning stab
may be determined and marginal stability curves construc
Note that if the analysis of the perturbed equilibrium is loc
to the original surfacecb in Eq. ~9!, as infinite-n ballooning
analysis indeed is, then the equations describing how
variations affect the local shear are exact. Variations of a
magnitude are allowed and the stability properties of the p
turbed equilibria are characteristic of the geometry of
original surface.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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In global equilibrium calculations, altering the pressu
may well alter the geometry of the magnetic surfaces. Thi
turn will affect the ballooning stability properties. In th
work, we only investigate the role of profile variations; how
ever, it is possible to incorporate variations in magnetic
ometry using the formulation presented by Hegna.13

Dimensionless quantities are used to describe the va
tions in pressure gradient and shear. The equilibrium va
tions are parameterized by (i- 8,p8). It is convenient to use
the normalized quantities (s̄,ā) defined as

s̄52
R0

i- ~G1i- I !r1/gcc ī 8, ~30!

ā52
2V8

i- 2 S V8

~G1i- I !r1/gccD 1/2

p8. ~31!

These normalizations reduce to the conventional definiti
used in the shifted circle model of tokamak studies.14

III. NUMERICAL IMPLEMENTATION

The equilibria used in this study are generated
VMEC.15 The VMEC representation, assuming stellara
symmetric equilibria,16 is as follows:

R5(
n,m

Rn,m~c!cos~muV2nf!, ~32!

Z5(
n,m

Zn,m~c!sin~muV2nf!, ~33!

whereuV is the VMEC poloidal angle and the summation
the VMEC convention includes the termsn50,N for m50
andn52N,N for m51,M21. The VMEC equilibrium, or
more precisely a selected flux surface in the VMEC equi
rium, is occasionally referred to in this article as the ‘‘orig
nal’’ equilibrium, upon which variations in the profiles ar
performed.

The Boozer coordinate information is expressed

R5(
n,m

Rn,m
B cos~mu2nz!, ~34!

f5z1(
n,m

fn,m
B sin~mu2nz!, ~35!

Z5(
n,m

Zn,m
B sin~mu2nz!, ~36!

where similarly the summation includes the termsn50,NB

for m50 andn52NB ,NB for m51,MB21.
The identities Eqs.~4!, ~5!, ~6! are useful for examining

the numerical accuracy of both the original equilibrium a
the transformation to Boozer coordinates.

To implement the method numerically it is necessary
compute the termD appearing in Eq.~18!. It is most conve-
nient to solve separately for the coefficients ofi-8 andp8, as
later these will be varied separately. By noting that 1/gcc and
l/gcc are even functions for stellarator symmetr
configurations,16 D may be written
Downloaded 25 Nov 2003 to 198.35.4.102. Redistribution subject to AI
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D5i- (1)8(
8

D i-8mn sin~mu2nz!

2p(1)8(
8

Dp8mn sin~mu2nz!, ~37!

where the summation excludes (n,m)5(0,0) and

D i- 8mn5
~1/gcc!mn

~i-m2n!~1/gcc!0,0
, ~38!

Dp8mn5
V8~G1i-I !

~i-m2n!~1/gcc!0,0
3@~1/gcc!0,0~l/gcc!mn

2~l/gcc!0,0~1/gcc!m,n#. ~39!

All quantities in this expression are provided by the origin
equilibrium represented in Boozer coordinates. After t
D i-8mn ,Dp8mn have been evaluated, no further equilibriu
computations or equilibrium variation computations are
quired. Arbitrary variations inp8,i-8 may be made, and the
perturbed ballooning equation directly solved.

A numerical code, STESA~STEllarator s2a), that
solves forD and calculates the ballooning eigenvalues h
been developed. The numerical procedure used to solve
ballooning equation is to represent the eigenvector on a
crete grid along the chosen field line, with derivatives eva
ated on the half-grid. This reduces the problem to that
finding the eigenvalue and corresponding eigenvector o
tridiagonal matrix. To this extent, the numerical procedure
equivalent to that used by COBRA,17 with the exception that
COBRA also uses Richardson’s extrapolation and variatio
refinement to improve the eigenvalue estimate and thu
more efficient numerically. The computational intensi
component of the calculation is the determination of the
efficients of the ballooning equation. This takes the form o
Fourier summation of the metric elements. To implement
method of profile variations, the only additional computati
required at this point is the determination ofL, which, given
the original equilibrium andp8,i-8, is a Fourier summation o
theD i-8mn ,Dp8mn harmonics and does not add significantly
the calculation.

The ballooning eigenvalue solver used in this work h
been bench-marked against COBRAVMEC,18 an extension
of COBRA written in VMEC coordinates. In benchmarkin
the eigenvalue solver in STESA against COBRAVMEC,
was necessary to increase both the Fourier resolution of
the VMEC equilibrium and the transformation to Boozer c
ordinates to obtain good agreement with the ballooning p
files: particularly so at high pressure. The radial balloon
profile for all configurations considered in this article ha
been verified against COBRAVMEC with good agreeme
and will be shown in later sections.

IV. AXISYMMETRIC CASE

To understand the properties of stability boundaries
stellarators, it is useful to consider first a simpler case
large aspect ratio, circular cross-section tokamak.14,19 This
serves both to illuminate some of the features we may exp
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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in toroidal configurations, and enables us to see later
nonaxisymmetric effect on stability boundaries. Also,
serves as a useful benchmark for the numerical results.

A series of circular cross-section axisymmetric equil
ria, with increasing aspect ratio is constructed. Each confi
ration is given a broad pressure profile to resemble the sh
boundary model, but this detail is somewhat irrelevant as
it is only the pressure gradientp8 at the magnetic surface o
interest that directly affects the ballooning stability~though
the pressure profile andb may alter the geometry and thu
indirectly affect the ballooning stability!, andp8 itself is var-
ied to construct the stability curves. For each case, the (s̄,ā)
marginal stability diagram is constructed and as shown
Fig. 1 there is good convergence to the model~infinite aspect
ratio! case. In fact, it is difficult to distinguish theA5100
stability curve withA5` curve. The numerical resolution o
VMEC is 299 surfaces~with the 240th surface selected!, M
510,N50, the resolution the Boozer transformation isMB

540,NB50. Numerical infinityh` for the ballooning calcu-
lation is set to64032p poloidal, with 50 grid points per 2p
for the finite difference calculation of the ballooning eige
value. The large ‘‘numerical-infinity’’ is required to correctl
describe the eigenmodes near (s̄,ā)5(0,0), as the modes
become quite extended near this point.

Ballooning modes are pressure driven instabilities, a
the driving force is the relative direction of the curvature a
the pressure gradient. The pressure gradient is negative
these cases, so there is potentially an instability when
curvature is negative. The effect of local shear is to cont
ute a stabilizing effect through field line bending. The loc
shear is related to the pressure gradient through the Pfirs
Schlüter modulation as described by the term proportiona
p(1)8 in Eq. ~18!, and as the pressure increases the pres

FIG. 1. (s̄,ā) diagrams for large aspect ratio, circular cross-section to
mak. As the aspect ratioA increases~dottedA510, dashedA520, dashed–
dottedA550, dashed–dotted–dotted–dottedA5100) the stability bound-
ary converges to the infinite aspect ratio model~solid! boundary.
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induced modulation of the local shear increases. When
gions of small local shearusu coincide with regions of nega
tive curvature, a ballooning instability can occur.

In Figs. 2, 3, 4, eigenvectors, the normal curvature a
local shear are shown for the aspect ratioA550 configura-
tion in the first stable region (s̄,ā)5(0.50,0.25), the un-
stable region (s̄,ā)5(0.25,0.50) and the second stable r
gion (s̄,ā)5(0.75,0.00) of Fig. 1. In the first stable regio
usu is sufficiently large in the negative curvature region
stabilize the modes. In the unstable region,usu goes to zero in
the negative curvature region and a localized mode can e
In the second stable region,usu is again sufficiently large in

-
FIG. 2. Eigenvector~solid!, local shear~dotted!, and normal curvature
~dashed! for the equilibrium in the first stable region (s̄,ā)5(0.50,0.25).

FIG. 3. Eigenvector~solid!, local shear~dotted!, and normal curvature
~dashed! for the equilibrium in the unstable region (s̄,ā)5(0.25,0.50).
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negative curvature region to stabilize~broaden! the eigen-
mode. Note that for the purposes of illustration, ‘‘numeric
infinity’’ is chosen6232p for these eigenvector diagram

V. QUASIAXISYMMETRIC CASE

We consider a quasiaxisymmetric stellarator configu
tion considered in the design of the National Compact S
larator eXperiment~NCSX!.20,21,22The ballooning instability
mechanisms in a quasi-axisymmetric stellarator have b
studied in Refs. 23, 24, 25. The fixed-boundary design li3
is studied. Cross sections in Boozer coordinates of li383
low pressure and high pressure are shown in Figs. 5 an
The pressure and rotational-transform profiles for vario
pressures are shown in Fig. 7. For the high pressure c
there is a noticeable deformation of the coordinates, wh
indicates a change in the geometry of the inner surfaces
the method of constructing marginal stability diagrams c
sidered in this article is geometry dependent, we may exp
that the marginal stability diagrams will change as the pr
sure ~and thus the magnetic coordinate geometry! is in-
creased. Note that these configurations, particularly the h
pressure configurations, are not intended to be realized in
experimental operation of NCSX. They may be conside
as suitable example equilibria intended for study.

A comparison of the ballooning profiles (l;2v2) from
STESA and COBRAVMEC for various pressures are sho
in Figs. 8, 9, 10. The ballooning profiles show that li383
marginally unstable to ballooning modes forb54.20%, and
is unstable over a large region of the minor radius 0.3,c
,0.95 at b511.93%; however, as the pressure is furth
increased the surfaces 0.35,c,0.6 become stable.

The STESA and COBRAVMEC profiles show goo
agreement in the location of marginal stability. Note th
there are differences in the normalization of the eigenva

FIG. 4. Eigenvector~solid!, local shear~dotted!, and normal curvature
~dashed! for the equilibrium in the second stable region (s̄,ā)
5(0.00,0.75).
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between these codes. For these ballooning profiles, the
genvalue depends upon field line labela and ballooning
angle hk . Unless stated otherwise, we use the choicea
50,hk50 in these calculations. For this study,M ,N

FIG. 5. Cross section of Boozer coordinates of li383 atb50.32%~left! and
b516.43% ~right! for li383 on thez50 plane.

FIG. 6. Cross section of Boozer coordinates of li383 atb50.32%~left! and
b516.43% ~right! for li383 on thez52p/6 plane.
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518,10 in Eqs.~32!, ~33! which results in 368 Fourier har
monics, andMB58M ,NB58N in Eqs. ~34!, ~35!, ~36!
which results in 22817 Fourier modes to describe the e
librium in Boozer coordinates. The radial resolution us
wasns5100. This resolution was deemed sufficient by t
agreement between the STESA ballooning solver and C
BRAVMEC.

Marginal stability diagrams for li383 at b
54.20%,11.93%, and 16.43%, on surfacesc50.30,0.50
andc50.80 are shown in Figs. 11, 12, 13. In each of the
diagrams, the location of the original equilibrium is al

FIG. 7. Rotational-transform~solid! and pressure~dashed! profiles for li383
at b54.53%,11.2416%,16.43%.

FIG. 8. Ballooning radial profile from STESA~solid! and COBRAVMEC
~dotted! for li383 at b54.20%.
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shown. The field line labela50 and the ballooning angle
hk50. Figure 11 suggests there will be a second stable
gion for thec50.5 andc50.8 surfaces, but not for thec
50.3 surface, in apparent agreement with the ballooning
genvalue profiles. For this case, the location of the origi
equilibrium for the c50.5 andc50.8 surfaces in (s̄,ā)
space coincide. As the pressure is increased tob511.93%,
all the original surfaces are in the unstable region. The
bility boundaries have changed slightly, with the stabil
boundary for thec50.3 surface now showing the existenc
of second-stability. For theb516.43% case, the originalc

FIG. 9. Ballooning radial profile from STESA~solid! and COBRAVMEC
~dotted! for li383 at b511.93%.

FIG. 10. Ballooning radial profile from STESA~solid! and COBRAVMEC
~dotted! for li383 at b516.43%.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



b

n

ib
e

ru
ig
ul

acy
ure.
the
for

C
in
nce
ria-
tel-

ec-
rge
15,

cur-
un-

m-
ion

ere
that

s in

en-
st
ith

m-
ly
nd

gion,
ases

den
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50.5 surfaces is now in the second stable region. The sta
ity boundary for each surface suggests the existence
second-stability, provided that dramatic geometric variatio
do not occur.

It will be interesting to examine higher pressure equil
ria to examine whether the suggested second-stability ind
exists on all surfaces simultaneously. An attempt to const
higher pressure equilibria was performed, but with the h
numerical resolution parameters used here some diffic

FIG. 11. (s,a) diagrams for thecb50.3 ~solid!, 0.5 ~dotted!, and 0.8
~dashed! surfaces in NCSX li383 atb54.20%. The position of the initial
equilibrium ~for each surface! is also shown.

FIG. 12. (s,a) diagrams for thecb50.3 ~solid!, 0.5 ~dotted!, and 0.8
~dashed! surfaces in NCSX li383 atb511.93%. The position of the initial
equilibrium ~for each surface! is also shown.
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was encountered with VMEC convergence and the accur
of the transformation to Boozer coordinates at high press
To enable marginal stability diagrams and to determine if
region of second-stability extends over the entire plasma
stellarator configurations with very highb (b.20%), it
may be necessary to follow the example of COBRAVME
~Ref. 18! and develop the theory of profile variations
VMEC coordinates, thus alleviating some of the converge
problems. Nevertheless, through the use of the profile va
tion method, this work suggests that quasiaxisymmetric s
larators may exist with ballooning stable profiles at highb.

It is interesting to compare the behavior of the eigenv
tors, the normal curvature and local shear to that of the la
aspect-ration circular-cross section tokamak. In Figs. 14,
16 are shown the behavior of the eigenvectors, normal
vature, and shear along the field line in the first stable,
stable and second stable regions for theb511.93% case.
The behavior of the curvature and local shear is quite co
plicated in the stellarator case and for clarity only the reg
near the ‘‘origin’’ hk50 is shown. The valuehk50 is used
throughout this study. In the three cases shown, this is wh
the eigenmode peaks and thus it is reasonable to expect
this is where the eigenmode is most sensitive to variation
the local shear.

At hk50, the curvature is negative so there is the pot
tial for a localized ballooning mode to exist. In the fir
stable region, the local shear is negative, apparently w
sufficient magnitude to prevent a localized mode from for
ing. The ballooning mode for this case is comparative
broad. As p8 is increased, the local shear increases a
passes through zero athk50 and the ballooning mode now
becomes localized and unstable. In the second stable re
as the pressure is further increased the local shear incre
and now has sufficient magnitude to stabilize and broa

FIG. 13. (s,a) diagrams for thecb50.3 ~solid!, 0.5 ~dotted!, and 0.8
~dashed! surfaces in NCSX li383 atb516.43%. The position of the initial
equilibrium ~for each surface! is also shown.
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the mode. The behavior is thus similar to that observed in
tokamak case.

Note that though the simple picture that ballooning
stability occurs when small local shear and bad curvat
coincide is consistent with both the tokamak and quasis
metric stellarator case presented here, an exhaustive inv
gation and confirmation of this has not yet been perform
The structure of both the curvature and local shear is q
complicated in the stellarator case.

FIG. 14. Eigenvector~solid!, normal curvature~dashed! and shear~dotted!
for b511.93%,c50.80,(s̄,ā)5(2.5,1.0).

FIG. 15. Eigenvector~solid!, normal curvature~dashed! and shear~dotted!
for b511.93%,c50.80,(s̄,ā)5(0.0,3.0).
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VI. VARIATION OF FIELD LINE LABEL

A unique feature of three-dimensional geometry is th
the ballooning eigenvaluel will depend not only on the flux
surface labelc and the ballooning anglehk , but also on the
magnetic field line labela: l5l(c,a,hk). This is not case
in axisymmetric systems where the ballooning eigenvalu
a function of the surface and ballooning angle only:l
5l(c,hk). This dependency on magnetic field line lab
adds complexity to solving the full WKB problem;26 how-
ever, there are examples of three-dimensional systems sh
ing that global ballooning spectrum properties can in so
cases be accurately predicted from the WKB-balloon
theory.27–29

In Fig. 17, the dependence of the ballooning eigenva
on magnetic field line (a5u2i-z) is shown for theb
516.44% case on the magnetic surfacesc50.30,0.50, and
0.80. Note that for thec50.30,0.80 surfaces, the balloonin
eigenvalue is near the maximum ata50; however, for the
c50.50 surface, the eigenvalue is near a minimum. T
suggests that the stability boundaries shown in the prev
section will likely be altered as the field line label is allowe
to vary. Additionally, it is interesting to note that on the sam
magnetic surface, for all three magnetic surfaces, there
mixture of field lines with negative and positive balloonin
eigenvalues.

In Figs. 18, 19, 20, the marginal stability boundaries a
plotted for theb516.44% case witha51.04720. While the
structure of these diagrams is qualitatively similar to thea
50 case, there are important quantitative differences.
diagram for thec50.8 surface suggests that the seco
stable region is fractured.

The dependence of the eigenvalue onhk has not been
examined here.

FIG. 16. Eigenvector~solid!, normal curvature~dashed!, and shear~dotted!
for b511.93%,c50.80,(s̄,ā)5(22.5,5.0).
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VII. DISCUSSION

In this work, a study of the ideal MHD ballooning sta
bility properties of a quasiaxisymmetric stellarator is p
sented. In particular, the marginal stability properties as fu
tions of plasma profiles have been examined using
procedure introduced by Greene and Chance3 and general-
ized to three-dimensional systems by Hegna and Nakajim11

This technique allows one to manipulate the plasma profi

FIG. 17. Dependence of ballooning eigenvalue on field line labela for the
b516.43% case for surfacesc50.30 ~solid!, 0.50 ~dotted!, and 0.80
~dashed!.

FIG. 18. (s,a) diagrams for thecb50.3 ~solid!, 0.5 ~dotted!, and 0.8
~dashed! surfaces in NCSX li383 atb54.20% with field line labela
51.04720. The position of the initial equilibrium~for each surface! is also
shown.
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in the vicinity of a particular magnetic surface, keeping t
magnetic geometry fixed, while ensuring that the MHD eq
librium condition is satisfied. By using this technique, a ge
eralization of (s,a) curves used prominently in tokamak ba
looning calculations can be constructed for general thr
dimensional equilibria.

The marginal stability diagrams for the quasiaxisymm
ric stellarator case studied in this article have a numbe

FIG. 19. (s,a) diagrams for thecb50.3 ~solid!, 0.5 ~dotted!, and 0.8
~dashed! surfaces in NCSX li383 atb511.93% with the field line labela
51.04720. The position of the initial equilibrium~for each surface! is also
shown.

FIG. 20. (s,a) diagrams for thecb50.3 ~solid!, 0.5 ~dotted!, and 0.8
~dashed! surfaces in NCSX li383 atb516.43% with field line labela
51.04720. The position of the initial equilibrium~for each surface! is also
shown.
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similarities to the marginal stability diagrams of axisymm
ric tokamaks; however, there are some important differen
Both configurations show a stability boundary in t
‘‘tokamak-like’’ shear (s̄;2di-/dc.0) region where the
critical pressure gradient for instability rises~nearly! mono-
tonically with average magnetic shear. This can be seen
comparing thes̄.0 regions of Fig. 1 and Figs. 11, 12, 13.
this ‘‘strong-shear’’ limit, the ballooning eigenmode is loca
ized to a narrow range along the field line where the cur
ture is unfavorable. In this region of profile space, the q
siaxisymmetric stellarator and the tokamak have sim
ballooning properties.

Where the quasiaxisymmetric stellarator and axisymm
ric tokamak differ is whens̄ becomes small. For tokamak
there are no unstable ballooning modes for zero
‘‘stellarator-like’’ magnetic shear (s̄<0); however, for stel-
larators, unstable ballooning modes can exist in thes̄<0
region of parameter space. The underlying reason for th
the three-dimensional nature of the important geometric
jects ~local shear and curvature! that govern the margina
stability properties. Various workers30–33have studied the lo-
cal magnetic shear in nonaxisymmetric configurations.
this region of parameter space, the variation of the lo
shear within the magnetic surface can dominate the avera
shear. Since the harmonic structure of the local shear
incommensurate helicity with the prominent toroidal curv
ture, the ballooning eigenmode can localize to particular
gion along the field line with bad curvature.4,34 Cuthbert and
co-workers demonstrated that this mechanism can prod
unstable eigenmodes even in the limit of zero avera
shear.35,36

Associated with this behavior is a sensitivity of the b
looning mode eigenvalue to the magnetic field line lab
When the averaged magnetic shear becomes sufficie
small or negative, ballooning modes can be excited in q
siaxisymmetric stellarators.

Previous work suggested that due to the thr
dimensional nature of stellarators, the geometry of nona
symmetric systems would provide sufficient freedom for b
looning modes to find a region in which they may localiz
thus deteriorate, and even eliminate, the onset
second-stability.4,34 While this qualitative trend is seen in th
calculations presented here, quantitative calculations
needed to address the second-stability question prop
Having performed such calculations, the results indicate
there are quasiaxisymmetric stellarators that possess reg
of second-stability.

This work suggests that there may be ways to furt
optimize the stellarator to take advantage of second-stab
Perhaps through further shaping and/or profile optimizati
a stable path through configuration space may be discov
and exploited. It will be interesting to examine the quasih
lical case at highb and to construct marginal stability dia
grams for QPS.5

We note that the method presented enables the stab
of equilibria in the neighborhood of a given equilibria to b
determined with a minimum of computational effort. Thu
there is a possibility that this method will be of benefit
stellarator optimization routines.37,21,38At each surface, the
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pressure gradient may be altered to optimize stability, and
pressure profile itself be determined from the pressure gr
ent profile. A local method of optimization can become stu
in local minima. By incorporating the method of profil
variations, the optimizer may be able to determine t
across a small region of previously impassable instability
a region of stability.

For stellarator geometry, the ballooning eigenvalue g
erally depends on all three coordinates (c,a,hk). Conse-
quently, the isosurfaces of unstable eigenvalues may h
spherical topology in this space, in addition to the topolo
cal toroidal surfaces that axisymmetric configurations p
sess. This may lead to the global modes constructed from
tracing being highly localized. Such highly localized mod
may be stabilized by nonideal effects, and thus not be
deciding factor in determining pressure limits in stellarato
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